	 -	1			
Reg. No.					

BCACAC 108

Credit Based I Semester B.C.A. Degree Examination, Nov./Dec. 2015 (Common to All Batches) COMPUTER ORGANIZATION

Time: 3 Hours

Max. Marks: 80

Note: Answer any ten questions from Part – A and one full question from each Unit of Part – B.

PART-A

 $(2 \times 10 = 20)$

- 1. a) Find the 1's and 2's complements of the binary number 1010101.
 - b) Define byte and nibble.
 - c) Write Excess-3 and binary equivalent of (45)10.
 - d) Draw venn diagram for xy + xz.
 - e) Prove that x + x = x.
 - f) Write the truth table and logic diagram of XOR gate.
 - g) What is meant by duality principle? Write the dual of the given expression F = (x + y) (x + y').
 - h) What is combinational logic circuit? Draw the block diagram.
 - i) What is magnitude comparator?
 - j) What is multiplexer? Why is it called data selector?
 - k) What is flip flop? Write characteristic table of D-flipflop.
 - Define characteristic table and excitation table.

PART-B

Unit - I

2. a) Write a note on ICs.

(4+6+5)

- b) Perform the following subtraction using 9's and 10's complement method: 8052-3250.
- c) State and prove Demorgan's theorems for two variables.
- 3. a) Perform the following conversion
 - i) $(BCD.A1)_{16} = ()_{10}$
 - ii) $(915.67)_{10} = ()_8$

(4+6+5)

- b) Perform following subtraction using 1's and 2's complement methods: $(100.01)_2 (101.11)_2$.
- c) Write a note on error detection codes.

Unit - II

4. a) Using K-map, simplify the following expression:

(5+5+5)

$$F(A, B, C, D) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14).$$

- b) Implement the Boolean function F(A, B, C, D) = A(B + CD) + BC' using only NAND gate.
- c) Write the sum of minterm and product of maxterm for given expression. F(X, Y, Z) = XY + X'Z.
- 5. a) Minimize $F(A, B, C, D) = \sum (0, 3, 4, 7, 8) + \sum d(10, 11, 12, 13, 14, 15)$ and draw the logic diagram for minimized expression. (6+5+4)
 - b) Implement Boolean function F = x'y'z + x'yz + yz' with basic gate and also write the truth table.
 - c) Prove that NOR is a universal gate:

Unit - III

6. a) Explain the working of half adder with its logic diagram.

(5+5+5)

- b) Explain the working of 3 x 8 decoder.
- c) Explain the working of 4 x 1 multiplexer./
- 7. a) Design 2 bit magnitude comparator.

(5+5+5)

- b) Design BCD to Excess-3 code convertor.
- c) Design octal to binary encoder.

Unit - IV

8. a) What is shift register? Explain with a neat diagram.

(5+5+5)

- b) Design 3-bit counter using JK flipflop.
- c) Explain the working of clocked RS flipflop.
- 9. a) Explain state table, state diagram and state equation using an example. (5+5+5)
 - b) Design a 4-bit ripple counter.
 - c) Explain the working of JK flipflop. Write the characteristic table and characteristic equation.