Reg. No.					

BCACAC 108

 $(2\times10=20)$

(New Syllabus) (2012-13 Batch Onwards) COMPUTER ORGANIZATION

Time: 3 Hours Max. Marks: 80

Note: Answer any ten questions from Part A and answer any one full questions from each Unit in Part B.

PART-A

- 1 a) Write BCD and Excess-3 code of (276)₁₀.
 - b) Write 1's and 2's complement of (1011)₂.
 - c) Differentiate combination and sequential circuits.
 - d) Write the truth table and graphic symbol of NAND gate.
 - e) Prove that x + x'y = x + y.
 - 1) Write a table to show the minterms for three binary variables x, y and z.
 - g) Write dual of F = AB' + C.
 - Mhat is a half adder? Write truth table for the same.
 - Draw SR latch circuit using NOR gates.
 - Write the excitation table of JK flip-flop.
 - Write the diagram of 4 bit shift register using D-flip flops.
 - Define counter. State any one differences between synchronous counter and ripple counter.

PART-B UNIT-I

- 2 a) Perform following conversions
 - i) (75.75)₁₀ = (?)₂
 - ii) $(BCA)_{16} = (?)_2$
 - $\overline{\text{mi}}$) $(11011.11)_2 = (?)_8$
 - Perform following subtractions using 9's and 10's complement methods
 - i) (3762-975)₁₀

- ii) $(5310 7642)_{10}$
- c) State and prove any three theorems of Boolean Algebra.

- 3. a) Using Venn diagram prove that x(x + y) = xy + xz.
 - b) Perform the following subtractions using 1's and 2's complement methods.

i) (10101-1100)₂

ii) (1000 - 1110)₂

c) Implement XOR and XNOR using NOR gates.

(4+6+5)

UNIT - II

- 4. a) Simplify the following expression using K-map $F(w, x, y, z) = \Sigma(0, 2, 4, 7, 8)$ and Σ_d (5, 10, 13, 14)
 - b) Write truth table and logic circuits for the Boolean function F = XY + X'Y + Y'Z
 - c) Prove that NOR is universal gate.

(5+5+5)

- a) Express the following function in sum of minterms and product of maxterms
 F(A, B, C, D) = AB'C + BCD
 - b) Simplify the following expression using K-map $F(A, B, C, D) = \Sigma (0, 1, 2, 6, 8, 9, 10)$
 - c) Find the complement of following functions

i) $F_1 = X'YZ' + XY'Z + Y'Z$

ii) $F_2 = (A + B') (A' + B' + C) (B + C')$

(6+5+4)

UNIT - III

- a) What is a full adder? Write truth table, Boolean expression and logic diagram for the same.
 - b) Design 2 bit magnitude comparator.

c) Design 4 bit binary parallel adder using full adders.

(6+5+4)

(6+5+4)

- 7. a) Explain the working of BCD adder with suitable block diagram.
 - b) Define decoder. Design 3-to-8 line decoder.
 - c) Design 4-to-1 line multiplexer. Write necessary table and block diagram.

UNIT-IV

- 8. a) Explain clocked RS flip flop along with logic diagram and characteristic table.
 - b) Design a Bi-directional shift register.

c) Design a 4 bit binary ripple counter.

(6+5+4)

- 9. a) Design a MOD 7 synchronous counter using JK flip flops.
 - b) Explain the working of JK flip flop along with logic diagram and characteristic table.
 - c) Explain state table, state diagram and state equation with example. (6+