Reg. No.

BCACAC 208

Credit Based Third Semester B.C.A. Degree Examination, Nov./Dec. 2015 (New Syllabus) (2013-14 Batch Onwards) BASIC MATHEMATICS

Max. Marks: 80

Note: Answer any ten questions from Part – A and one full question from each Unit from Part – B.

PART-A

Prove that
$$\log \frac{x}{y} + \log \frac{y}{z} + \log \frac{z}{x} = 0$$
. (10×2=20)

Write binomial theorem.

Time: 3 Hours

- Find center and radius of a circle whose equation is $x^2 + y^2 2x 6y + 7 = 0$.
- d) Define continuity of a function.

(a) Find
$$\lim_{x\to 1} \frac{4x^4 + 3x^2 - 1}{x^8 + 7}$$
.

- fi) Differentiate $x + \frac{4}{x} \frac{2}{x^7}$.
- $A = \{2, 3, 4\}, B = \{1, 2\}.$ Find A + B and A B.
- Define reflexive relation. Give an example.
- Define disjoint sets. Give example.
- Define digraph with an example.
- Define length of a path. Give an example.
- Define loop. Give an example.

PART-B UNIT-I

2. a) If
$$\log \left(\frac{x+y}{7}\right) = \frac{1}{2}(\log x + \log y)$$
, show that $\frac{x}{y} + \frac{y}{x} = 47$.

- b) Expand $\left(x \frac{1}{x}\right)^5$ using Binomial theorem.
- c) Show that (8, 3) (2, -1) (0, 1) and (6, 5) are vertices of parallelogram. (5+5+5)
- 3. a) If $\log 2 = 0.3010$ and $\log 3 = 0.4771$ find the value of $\log \frac{(16)^{\frac{1}{5}}(5)^2}{(108)^3}$.
 - b) Prove that quadrilateral with vertices (2, -1), (3, 4), (-2, 4) and (-3, 2) is a rhombus.
 - c) Find the two middle terms in the expansion of $\left(3x \frac{2x^2}{3}\right)^7$. (5+5+5)

UNIT-II

- 4. a) If θ is the 4th quadrant and $\cos \theta = \frac{5}{13}$, find the value of $\frac{13\sin \theta + 5\sec \theta}{5\tan \theta + 6\cos \theta}$.
 - b) Evaluate $\lim_{x\to 2} \frac{2x^2 7x + 6}{5x^2 11x + 2}$
 - c) Differentiate $\frac{x^2 1}{x^2 + 1}$ with respect to x. (5+5+5)
- 5. a) If $\cot \theta = \frac{24}{7}$ find the values of other trigonometric functions.
 - b) Differentiate $(3x^2 + 5)(2x^3 + x + 7)$ with respect to x.
 - c) Integrate: i) $\int_{2}^{4} (4x^3 + 3x^2 2x + 5) dx$ ii) $\int_{6}^{10} \frac{dx}{(x+2)}$ (5+5+5)

UNIT - III

- 6. a) $A = \{\alpha, \beta\}$ and $B = \{1, 2, 3\}$. Find A^2 , B^2 , $A^2 \times B$, $A \times B$ and $B \times A$.
 - b) For the relation $R = \{(1, 2), (3, 4), (2, 2)\}$, $S = \{(4, 2)\}$ obtain the relation matrix of RoS and SoR.
 - c) Draw Venn diagram for
 - i) B∩ (~A)
 - ii) A∩B≠ o
 - iii) AUB
 - iv) ~A
 - v) A-B

(5+5+5)

- 7. a) Let $X = \{1, 2, 3, 4...7\}$ a relation R is defined as $R = \{(x, y) | x y \text{ is divisible by 3}\}$. Show that R is an equivalence relation and draw graph of R.
 - b) Define:
 - i) Transitive relation. Give example.
 - ii) Define partial order relation.
 - iii) Define equivalence relation.
 - c) Given $A = \{2, 5, 6\} B = \{3, 4, 2\} C = \{1, 3, 4\}$. Show that

i)
$$A - C = A$$

(5+6+4)

UNIT-IV

- 8. a) Define the following terms with an example
 - i) Strongly connected
 - ii). Weakly connected
 - iii) Unilaterally connected
 - b) A = {1, 2, 3, 4} and R be a relation on A that has matrix $M_R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$

Construct relational graph of R and write indegree and outdegree of all nodes.

c) Explain matrix representation of graph with suitable example.

(6+4+5)

- 9. a) Define following terms with an example
 - i) Cyclic graph
 - ii) Acyclic graph
 - iii) Isomorphic graph
 - b) Illustrating with suitable example to each define the terms path, reachability.
 - c) Convert the following tree into binary tree.

(6+4+5)

