	1						
Reg. No.							
3	_		_	_	_	_	

BCACAC 208

Credit Based Third Semester B.C.A. Degree Examination, Oct./Nov. 2014 (New Syllabus) (2013-14 Batch Onwards) BASIC MATHEMATICS

Time: 3 Hours

Max. Marks: 80

Note: Answer any ten questions from Part – A and one full question from each Unit from Part – B.

 $(10 \times 2 = 20)$

1. a) Represent the following in logarithm format

i)
$$2^4 = 16$$

- b) Find how many four letter words can be formed out of the word LOGARITHMS.
- c) Write distance formula.
- d) If $A = \{a, b\}$, $B = \{1, 2, 3\}$ write $A \times B$ and $B \times A$.
- e) Define proper subset. Give example.
- f) Define power set. Give example.

g) Find
$$\lim_{x\to 1} \left(\frac{4x^4 + 3x^2 - 1}{x^3 + 7} \right)$$
.

- h) Show that the function $f(x) = x^3$ and $g(x) = x^{1/3}$ for $x \in R$ are inverse of one another.
- i) If $y = 4x^3 7x^4$ then find $\frac{dy}{dx}$.
- Represent the following in radians:
 - i) 225°

- ii) 135°
- k) Define Multigraph with example.
- n) Define
 - i) Null graph
- ii) Loop.

PART – B Unit – I

- 2. a) Prove that $\log \frac{81}{8} 2\log \frac{3}{2} + 3\log \frac{2}{3} + \log \frac{3}{4} = 0$.
 - b) Show that the points (6, 6), (2,3), (4,7) are the vertices of a right angled triangle.
 - c) Give general equation of tangent and radius of circle. Find the equation of circle whose centre is (4, 5) and which passes through centre of circle $x^2 + y^2 + 4x + 6y 12 = 0$. (5+5+5)
- 3. a) If $\log_2 x + \log_4 x + \log_{16} x = \frac{21}{4}$ then find x.
 - b) Find the middle terms in the expansion $\left(3x \frac{2x^2}{3}\right)^7$.
 - c) Find the equation of the straight line passing through the point (-3, 1) and perpendicular to the line 5x 2y + 7 = 0. (5+5+5)

Unit - II

- 4. a) If $\tan \theta = \frac{4}{5}$ find the value of $\frac{2\sin\theta + 3\cos\theta}{4\cos\theta + 3\sin\theta}$
 - b) Prove that the function $x^2 + 4x 2$ is continuous at x = 1.
 - c) Integrate $\int_{1}^{1} (2x^2 x^3) dx$ (5+5+5)
- 5. a) Prove that $4(\sin^4 30^\circ + \cos^4 60^\circ) 3(\cos^2 45^\circ \sin^2 90^\circ) 2 = 0$.
 - b) Evaluate : $\lim_{x\to 2} \left(\frac{2x^2 7x + 6}{5x^2 11x + 2} \right)$.
 - c) Differentiate: $(3x^2 + 5)(2x^3 + x + 7)$ with respect to x. (5+5+5)

Unit - III

- 6. a) Write $A \times B \times C$, B^2 , A^3 , $B^2 \times A$, and $A \times B$ where $A = \{1, 4\}$ $B = \{4, 5\}$ $C = \{5, 7\}$.
 - b) Let $R = \{(1, 2), (3, 4), (2, 2) \text{ and } S = \{(4, 2), (2, 5), (3, 1), (1, 3)\}.$ Find $R \circ S$, $S \circ R$, $R \circ R$, $R \circ (S \circ R)$, $R \circ R \circ R$.
 - c) $P = \{<1, 2><2, 4><3, 3>\} Q = \{<1, 3><2, 4><4, 2>\}$. Find D(P), D(Q) $D(P \cup Q)$, R(P) and R(P \cap Q). (5+5+5)

7. a) Given the relation matrices M_R and M_S . Find MROS, $M_{\tilde{R}}, M_{\tilde{S}}, M_{\tilde{R} \tilde{S}}$ and show

-3-

$$\text{that } \ M_{\text{R\"oS}} = M_{\widetilde{\text{S}} \circ \widetilde{\text{R}}} \ \ M_{\text{R}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \text{and } M_{\text{S}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}.$$

- b) Let $x = \{1, 2, 3, 4\}$ and $R = \{(x, y) \mid x > y\}$. Draw the graph of R and also give its matrix.
- c) Define Surjective Injective and Bijective functions with example. (5+4+6)

Unit - IV

- 8. a) Define the following with example.
 - i) Digraph
 - ii) Isomorphic graphs
 - iii) Parallel edges
 - iv) Weighted graph
 - b) Explain Binary tree with suitable diagram and example.
 - With example explain the terms path reachability and connectedness with suitable examples. (6+4+5)
- 9. a) Define the following terms with example.
 - i) Total degree

ii) Directed tree

iii) Elementary path

- iv) Length of path
- b) Define a directed tree and binary tree. Give example.
- c) Convert the following tree to binary tree.

(6+4+5)