

BCACACS 101

First Semester B.C.A. Degree Examination, December 2024/January 2025 (SEP) (2024 – 25 Batch Onwards) FUNDAMENTALS OF COMPUTERS

Time: 3 Hours

Max. Marks: 80

Note: Answer **any ten** questions from Part – **A**. And **one full** question from **each** Unit in Part – **B**.

PART - A

1. Answer any ten questions.

 $(10 \times 2 = 20)$

- a) What do you mean by generations of Computers?
- b) Differentiate RAM and ROM.
- c) What is Cache memory?
- d) Define System Software. Give an example.
- e) What are Language Translators?
- f) What is Machine Language?
- g) Obtain the 1's and 2's Complements of the following binary numbers.
 - i) 1010101
 - ii) 000001
- h) What is meant by RADIX of the number system?
- i) What is Excess-3 code? Give an example.
- j) Write truth table and logic expression of NOR gate.
- k) What are minterm and maxterm?
- I) Write the general structure of 2 variables K-Map.

PART - B

Unit - I

- 2. a) List and explain characteristics of Computers.
 - b) Draw the block diagram of a Computer System and explain the components of a Computer System.
 - c) Briefly explain any two pointing device.

(5+5+5)

- 3. a) List and explain in brief the characteristics of Third-Generation Computers.
 - b) Explain the applications of Computers in different fields.
 - c) List out any four registers available in CPU along with its function.

(5+5+5)

Unit - II

LIBRARY

- 4. a) Define Operating System and explain basic functions of an Operating System.
 - b) Write a note on:
 - i) Word Processors
 - ii) Image Editors.
 - c) Write an algorithm to display maximum of three numbers.

(5+5+5)

- 5. a) Briefly explain different phases of the Program Development Cycle.
 - b) Explain functions of System Utilities.
 - c) List and explain the advantages of high level languages.

(5+5+5)

Unit - III

- 6. a) State and prove De-Morgan's theorems for two variables.
 - b) Write the procedure to perform r's complement subtraction with example.
 - c) Using Venn diagram prove that A.(BC) = (AB).C.

(5+5+5)

- 7. a) Convert $(225.222)_{10} = ()_2 = ()_8 = ()_{16}$.
 - b) State and prove any two theorems of Boolean algebra.
 - c) Perform following subtraction using 9's and 10's complement methods: $(1234)_{10} (743)_{10}.$ (5+5+5)

Unit - IV

8. a) How do you get complement of a function? Find the complement of

$$F1 = x'yz' + x'y'z$$
$$F2 = x(y'z' + yz)$$

- b) Implement the following Boolean function using gates and also write the truth table.
 - i) F= xyz'
 - ii) F = xy' + x'z
- c) Using K-Map simplify the following expression. $F(A, B, \bar{C}, D) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14). \tag{5+5+5}$
- 9. a) Prove that NAND is universal gate.
 - b) Express the Boolean function F = XY' + X'Z as sum of minterm and product of maxterm.
 - c) Using K-map simplify the following expression : $F(A, B, C) = \Sigma(1, 2, 5, 7) + \Sigma(0, 4, 6). \tag{5+5+5}$

