Reg. No.				3		4.0	
			100		_	 -	-

LIBRARY

BCACACN 202

Second Semester B.C.A. Degree Examination, June/July 2024 (NEP – 2020) (2021 – 22 Batch Onwards) DATA STRUCTURES USING C (DSCC)

Time: 2 Hours

Max. Marks: 60

Note: Answer any six questions from Part – A and one full question from each Unit in Part – B.

PART - A

 $(6 \times 2 = 12)$

- 1. a) Define linear and non-linear data structure. Give an example.
 - b) What is sparse matrix? Give an example.
 - c) Define searching. Name any 2 types of searching techniques.
 - d) Write an advantage of linked list over arrays.
 - e) What is stack? Name the basic operations performed on stack.
 - f) What is garbage collection?
 - g) Name the 2 ways of representing trees in memory
 - h) Define the terms with respect to graph.
 - i) adjacent node.
 - ii) directed edge.

PART – B UNIT – I

 $(4 \times 12 = 48)$

2. a) What do you mean by traversing a linear array? Write an algorithm to traverse a linear array. (4+4+4)

.

- b) Write an algorithm to generate 'N' Fibonacci numbers using Recursion.
- c) Explain bubble sort with an example.
- 3. a) Explain insertion sort with an example.

(4+4+4)

- b) Write an algorithm for selection sort.
- c) Explain the representation of two dimensional array in memory.

BCACACN 202

UNIT - II

- 4. a) What is linear search? Write an algorithm for linear search. (4+4+4)
 - b) What is circular linked list? Explain.
 - c) Write an algorithm to insert an item into the beginning of the linked list.
- 5. a) Explain binary search with an example. (4+4+4)
 - b) Write an algorithm to delete a given node from the linked list.
 - c) Write a note on memory allocation and deallocation functions.

UNIT - III

- 6. a) Write an algorithm for PUSH and POP operations using arrays. (4+4+4)
 - b) Write an algorithm to convert infix expression into postfix expression.
 - c) What is priority queue ? Explain.
- 7. a) Write an algorithm to delete an item from stack using linked list. (4+4+4)
 - b) Evaluate the following postfix expression showing the stack status. $P: 3, 5, +, 6, 4, -, \star, 4, 1, -, 2, ^, +$.
 - c) Write an algorithm to insert an element into a queue using linked list.

UNIT - IV

- 8. a) Write a note on:
 - i) Complete binary tree.ii) Extended binary tree.
 - b) Define the terms with respect to tree.
 - i) Root node.
 - ii) Terminal nodes.
 - iii) Degree of a node.
 - iv) Depth.
 - c) Write an algorithm for Depth First Search (DFS) for a graph.
- 9. a) Draw the binary tree for the following inorder and preorder traversal. (6+6)

Inorder: E, A, C, K, F, H, D, B, G

Preorder: F, A, E, K, C, D, H, G, B

And also give its postorder traversal.

b) Explain linked representation of binary tree with an example.

(4+4+4)