

BCACACN 103

First Semester B.C.A. Degree Examination, February/March 2023 (NEP – 2020) (2021 – 22 Batch Onwards) MATHEMATICAL FOUNDATION (DSCC)

Time: 2 Hours

Max. Marks: 60

Note: Answer **any six** questions from Part – **A** and **one full** question from **each** Unit in Part – **B**.

PART - A

 $(6 \times 2 = 12)$

- a) Write the binomial theorem.
 - b) Find the value of:
 - i) log₄ 256
 - ii) log₂ 64.
 - c) Find the coordinates of the centroid of a triangle whose vertices are (3, -2) (-1, -4) and (-5, 6).
 - d) Represent the angles 90° and 135° in radians.
 - e) Differentiate $4x^3 7x^4$ with respect to x.
 - f) Define diagonal matrix. Give an example.
 - g) Find the first term and the common difference in an AP if n^{th} term is 7n-3.
- 0
- h) Define Echelon form of a matrix with an example.

- 2. a) Prove that $\frac{\log \sqrt{27} + \log \sqrt{8} \log \sqrt{125}}{\log 6 \log 5} = \frac{3}{2}$.
 - b) Find the 7th term in the expansion of $\left(x^3 \frac{1}{x}\right)^9$.
 - c) Find the equation of straight line passing through (2, 4) and perpendicular to 5x 7y = 100. (4+4+4)

5

- 3. a) If $\log_2 x + \log_4 x + \log_{16} x = \frac{21}{4}$, find x.
 - b) Show that the quadrilateral with points (2, -1) (3, 4) (-2, 3) and (-3, -2) is a rhombus.
 - c) Find the centre and radius of the circle, whose equation is $x^2 + y^2 4x + 8y 5 = 0$. (4+4+4)

Unit - II

- 4. a) Find the value of $\frac{\tan 45^\circ}{\csc 30^\circ} + \frac{\sec 60^\circ}{\cot 45^\circ} + \frac{5}{2} \cdot \frac{\sin 90^\circ}{\cos 0^\circ}$.
 - b) Evaluate $\lim_{x \to 2} \frac{2x^2 7x + 6}{5x^2 11x + 2}$.
 - c) Evaluate $\int \left(7x^2 3x + 8 \frac{1}{\sqrt{x}} + \frac{1}{x} + \frac{1}{x^2}\right) dx$. (4+4+4)
- 5. a) Consider $f(x) = \frac{x^2 4}{x 2}$ for x < 2,
 - f(x) = 4 for x = 2,
 - f(x) = 2 for x > 2, explain the continuity at x = 2.
 - b) If θ is in fourth quadrant and $\cos \theta = \frac{5}{13}$, find value of $\frac{13\sin \theta + 5\sec \theta}{5\tan \theta + 6\csc \theta}$.
 - c) Differentiate $9x^4 7x^3 + 8x^2 \frac{8}{x} + \frac{10}{x^3}$ with respect to x. (4+4+4)

Unit - III

6. a) If
$$A = \begin{pmatrix} 2 & 0 & 4 \\ 6 & 2 & 8 \\ 2 & 4 & 6 \end{pmatrix}$$
 $B = \begin{pmatrix} 10 & 0 & 4 \\ -2 & 15 & 7 \\ 2 & 2 & 2 \end{pmatrix}$ $C = \begin{pmatrix} 0 & 0 & 4 \\ -2 & 0 & 7 \\ 2 & 1 & 5 \end{pmatrix}$.

Find 3(A + B) - 2(C + A).

b) Find the adjoint of
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$
. (6+6)

(6+3+3)

7. a) If
$$A = \begin{pmatrix} 3 & -3 & 0 \\ 6 & 3 & 9 \\ 12 & 3 & 24 \end{pmatrix}$$
 $B = \begin{pmatrix} 2 & 3 & 0 \\ 6 & -9 & 3 \\ 3 & 3 & -3 \end{pmatrix}$. Find $(AB)' = B'A'$.

- b) Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 4 & 8 \end{bmatrix}$.
- c) If $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$, show that $A^2 = 2A$.

Unit - IV

- 8. a) Show that matrix $\begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ satisfies its characteristic equation.
 - b) Find the three numbers in an AP whose sum is 30 and product is 840. (6+6)
- 9. a) Using Cramer's rule, solve the equations x + y + z = 11, 2x 6y z = 0 and 3x + 4y + 2z = 0.
 - b) Three numbers whose sum is 18 are in AP and if 2, 4, 11 are added to them respectively, the resulting numbers are in GP. Determine the numbers. (6+6)

as the tor