Reg. No.									
----------	--	--	--	--	--	--	--	--	--

BCACACN 101

First Semester B.C.A. Degree Examination, February/March 2023 (NEP – 2020) (2021 – 22 Batch Onwards) FUNDAMENTALS OF COMPUTERS (DSCC)

Time: 2 Hours

Max. Marks: 60

Note: Answer any six questions from Part – A and any one full question from each Unit in Part – B.

PART - A

 $(6 \times 2 = 12)$

- 1. a) What is Cache memory?
 - b) Differentiate RAM and ROM.
 - c) Define System Software. Give example.
 - d) Convert (AB2)₁₆ to Binary and Octal.
 - e) Write the BCD and Excess-3 Codes for 57.
 - f) Write 1's and 2's Complement for (10101011)₂.
 - g) Draw the logic circuit for F(x, y, z) = x y + x' z' using basic gate.
 - h) Write the Truth Table and Logic expression of the OR gate.

PART - B

Unit - I

- 2. a) List and explain characteristics of Computer.
 - b) Differentiate LCD and CRT monitors.

(6+6)

- 3. a) Write an algorithm and flowchart to display the maximum of three numbers.
 - b) Explain the applications of Computers in different fields.

(6+6)

P.T.O.

BCACACN 101

Unit - II

- 4. a) What is System Utility? Explain any five functions of System Utility.
 - b) Write a note on:
 - i) Word Processors
 - ii) Spreadsheet Software

(6+6)

- 5. a) Briefly explain different phases of the Program Development Cycle.
 - b) Define Operating System. List and explain basic functions of an Operating System. (6+6)

Unit - III

- 6. a) State and prove any two theorems of Boolean algebra.
 - b) Perform the subtractions 272 354 using 9's and 10's Complement Methods. (6+6)
- 7. a) State and prove distributive law using truth table.
 - b) Using Boolean Theorems and postulates, prove x'y'z + x'yz + xy' = x'z + xy'
 - c) Perform the following subtraction using 1's complement method. $(101011)_2 (111001)_2.$ (4+4+4)

Unit - IV

- 8. a) Express the Boolean function F(A, B, C) = A + B'C as sum of minterms and product of maxterms.
 - b) Solve the expression $F(A, B, C, D) = \sum (0, 2, 8, 10, 14) + \sum d(5, 15)$ using K-Maps and draw the logic diagram for minimized expression. (6+6)
- 9. a) Simplify the SOP expression $F(A, B, C, D) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$ using K-Maps. Draw the logic diagram for the minimized expression.
 - b) What are universal gates? Prove that NAND is universal gate. (6+6)