Dog No		345	110		4
Reg. No.		1			
-					

BCACAC 208

Credit Based III Semester B.C.A. Degree Examination, April 2021 (2019 –20 and Earlier Batches) BASIC MATHEMATICS

Time: 3 Hours Max. Marks: 80

Note: Answer any ten questions from Part – A and one full questions from each Unit of Part – B.

PART - A

W. St. St.

 $(10 \times 2 = 20)$

- 1. a) If $\log_a \sqrt{2} = 1/6$, find the value of a.
 - b) Find the distance between the points (5, 7) (2, 11).
 - c) Write binomial theorem.
 - d) Represent the following angles in radians.
 - i) 45°
- ii) 225°
- e) Define the limit of a function.
- f) If $y = 2x + x^2$ what is $\frac{dy}{dx}$?
- g) Integrate $(x^2 1)^2$.
- h) Represent the following using Venn diagram.
 - i) AUB
- ii) A-B
- i) Define null set and universal set.
- j) Define equivalence relation.
- k) Define digraph with an example.
- I) Define isomorphic graphs with example.

PART – B Unit – I

- 2. a) i) Solve for x if $\log_8 x + \log_4 x + \log_2 x = 11$.
 - ii) Prove that the points (6, 6), (2, 3) and (4, 7) form a right-angled triangle.
 - b) Find the equation of straight line passing through the point (-1, 2) perpendicular to the line 4x 3y + 7 = 0.
 - c) Define circle. Find the coordinates of the center and the length of radius of $x^2 + y^2 + 7x 9y 20 = 0$. (6+4+5)
- 3. a) Prove that $\frac{\log \sqrt{27} + \log \sqrt{8} \log \sqrt{125}}{\log 6 \log 5} = \frac{3}{2}.$
 - b) i) In a paper on advanced accounts, ten questions are set. In how many different ways an examinee can choose 7 questions?
 - ii) Find the 11^{th} term in the expansion of $(y + 4x)^{30}$.
 - c) Find the coordinates of the point which divides externally the line joining (3, 5) and (2, 4) in the ratio 4:3. (4+6+5)

Unit - II

- 4. a) i) If $\tan \theta = \frac{4}{5}$, find the value of $\frac{2\sin \theta + 3\cos \theta}{4\cos \theta + 3\sin \theta}$.
 - ii) Reduce 36⁹ 32′ 50″ to the sexagecimal measure.
 - b) Evaluate $\lim_{x\to 2} \frac{2x^2 7x + 6}{5x^2 11x + 2}$.
 - c) Integrate $(x^3 + 2)^{1/2}$.

(6+5+4)

- 5. a) i) If $\sin \theta = \frac{8}{17}$ find $\frac{\cos \theta + \sin \theta}{\cos \theta \sin \theta}$.
 - ii) Express both in degrees and radians the angles of a triangle whose angles are to each other as 1:2:3.
 - b) Differentiate $\frac{x^2 + 4}{3x 7}$ with respect to x.
 - c) Find the value of $\int_{2}^{4} (9x^{2} 12x + 4) dx$.

(6+4+5)

Unit - III

- 6. a) $A = \{\alpha, \beta\}$ and $B = \{1, 2, 3\}$, find A^2 , B^2 , $A^2 \times B$, $A \times B$ and $B \times A$.
 - b) Let f(x) = x + 2, g(x) = x 2 and h(x) = 3x for $x \in R$, R is a set of real numbers. Find fog, fof, gog, gof and fo(hog).
 - c) Given the relation matrices

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad M_{S} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Find $M_{R \circ S}$, $M_{\tilde{R}}$, $M_{\tilde{S}}$, $M_{\widetilde{R} \circ \tilde{S}}$ and show that $M_{\widetilde{R} \circ \tilde{S}} = M_{\tilde{S}} \circ M_{\tilde{R}}$.

(5+5+5)

- 7. a) $A = \{1\} B = \{a, b\} C = \{2, 3\}$ write A^2 , B^2 , $A \times B \times C$, $C^2 \times A$.
 - b) Let $x = \{1, 2, 3\}$ f, g, h and s are the functions from X to X given by $f = \{<1, 2>, <2, 3>, <3, 1>\} \quad h = \{<1, 1>, <2, 2>, <3, 1>\}$ $g = \{<1, 2>, <2, 1>, <3, 3>\} \quad s = \{<1, 1>, <2, 2>, <3, 3>\} \quad Find fog, sos, fohog, sog, and fos.$
 - c) Define surjective, injective and bijective functions with example. (4+5+6)

Unit - IV

M MA NOT

- 8. a) Define the following with suitable example.
 - i) Multigraph.
 - ii) Mixed graph.
 - iii) Cyclic graph.
 - b) Define tree, root node, leaf node with suitable example.

c) $A = \{1, 2, 3, 4\}$ and R be a relation on A that has the matrix

$$M_{R} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Construct relational graph of R and write in-degree and out-degrees of all the nodes. (6+4+5)

- 9. a) Define the following:
 - i) in degree
 - ii) out degree
 - iii) total degree
 - iv) parallel edges
 - v) isolated vertex.
 - b) Explain matrix representation of graph with suitable example.
 - c) Convert the following tree into a binary tree.

(5+5+5)

