

BCACAC 133

First Semester B.C.A. Degree Examination, April 2021 (Choice Based Credit System) (2019 – 2020 Batch Onwards) COMPUTER ORGANIZATION

Time: 3 Hours

Max. Marks: 80

Instruction: Answer any ten questions from Part – A and one full question from each Unit of Part – B.

PART - A

 $(10 \times 2 = 20)$

- a) Obtain the 9's and 10's complements of the following decimal number 341.23.
 - b) Obtain the 1's and 2's complements of the binary number 1110101.
 - c) Write excess-3 and binary equivalent of (845)₁₀.
 - d) Draw the logic circuit for F(X, Y, Z) = X'Y + X'Z.
 - e) How to write the complement of a Boolean function? Also write the complement of F(X, Y, Z) = X'YZ' + X'Y'Z.
 - f) Write the general structure of 3 and 4 variables K-Map.
 - g) What is half subtractor? Write its truth table.
 - h) What is encoder? Write the truth table of octal to binary encoder.
 - i) Write the truth table of 2 to 4 line decoder.
 - j) Draw the circuit diagram of SR latch using NOR gate.
 - k) Write the excitation tables of T and JK flip flop.
 - Draw the block diagram of a sequential circuit.

PART - B

Unit - I

.

- 2. a) Perform following Subtraction
 - i) $(8052)_{10}$ $(3250)_{10}$ using 9's complement.
 - ii) (6320)₁₀- (8659)₁₀ using 10's complement.

- b) Prove the following theorems of Boolean algebra.
 - i) X + X = X
 - ii) x + xy = x.
- c) Perform following conversion.
 - i) $(11100101.10)_2 = ()_8$
 - ii) $(45.B3)_{16} = ()_2$
 - iii) $(789)_{10} = ()_8$.

(4+5+6)

- 3. d) State the postulates of Boolean Algebra.
 - e) Perform following subtraction.
 - i) (1001)₂- (1011)₂ using 1's complement method.
 - ii) $(10011)_2$ $(1001)_2$ using 2's complement method.
 - f) Perform following conversion.
 - i) $(152.A1)_{16} = ()_{10}$
 - ii) $(345)_8 = ()_2$
 - iii) $(915)_{10} = ()_{16}$.

(5+4+6)

Unit - II

4. g) Using K-Map simplify the following expression.

 $F(w, x, y, z) = \sum (8, 9, 10, 11, 12, 13, 14).$

- h) Express the Boolean function F(A, B, C) = A + B'C as sum of minterm and product of maxterm.
- i) Prove that NAND is universal gate.

(5+5+5)

 j) Implement the Boolean function F(A, B, C, D) = D(A + B) + CD' using only NOR gate.

Draw the logic circuit for F(X, Y, Z) = XY + X'Z using basic gates.

k) Minimize F(A, B, C, D) = \sum (0, 3, 4, 7, 8) + \sum d(10, 11, 12, 13, 14, 15) using K-Map. (5+5+5)

Unit - III

- 6. I) Explain the working of full adder.
 - m) Design BCD to Excess-3 code converter.
 - n) Explain the working of 3+8 Decoder.

(5+5+5)

- 7. o) Design 2 bit magnitude comparator.
 - p) Design and explain BCD adder.
 - q) Explain the working of 4*1 multiplexer.

(5+5+5)

Unit - IV

- 8. r) Explain the working of clocked SR flip flop.
 - s) Design a octal synchronous counter using JK flip flop.
 - t) Design 4 bit Binary ripple counter.

(5+5+5)

- 9. u) Design BCD synchronous counter using T flip flop.
 - v) Explain the working of bi-directional shift register.
 - w) Explain state table, state diagram and state equation using example. (5+5+5)