		7 1101			1		100
Reg. No.			1	1	100	2006	1-24
1108. 110.							

BCACAC 208

III Semester B.C.A. Degree Examination, October/November 2019

(Credit Based Semester Scheme)
(Common to All Batches)

MATHEMATICS

Basic Mathematics

Time: 3 Hours]

Max. Marks: 80

Instructions: Answer **any ten**. questions from Part A and one full question from each unit from Part B.

PART - A

1. Answer any ten questions:

(10 × 2 = 20)

- (a) Change into exponential form
 - (i) $\log_4 64 = 3$
 - (ii) $\log_{\sqrt{2}} 16 = 8$
- (b) Find the number of permutations of the word ASSASSINATION.
- (c) Find the distance between (-4, -2) and (3, -5).
- (d) Express in radian
 - (i) 60°
 - (ii) 135°

Shri Dharmasthala Manunatheshwara Cellego of Busin — censgement Library MANGALORE - 575 003

- (e) Differentiate $7x^4 + 3x^3 9x + 5$ with respect to x.
- (f) Integrate $2x x^4$
- (g) Define proper subset. Give example.
- (h) Given $A = \{2,3,4\}$ $B = \{4,5,6\}$. Find B + A.
- (i) Represent the following using Venn diagram
 - (i) $A \cup B$
 - (ii) B-A
- (i) Define weighted graph with example.
- (k) Define mixed graph with example.
- (l) Define a binary tree with example.

PART – B

UNIT - I

- 2. (a) Without using log table solve $\log \frac{81}{8} 2 \log \frac{3}{2} + 3 \log \frac{2}{3} + 3 \log \frac{3}{4}$
 - (b) Expand $\left(\frac{3x}{4} + \frac{4}{3x}\right)^5$ using Binomial theorem.
 - (c) Show that the points (4, 3)(7, -1) and (9, 3) are the vertices of a isosceles triangle.
 - (d) Find the equation of the circle whose centre is (4, 5) and passing through the centre of the circle $x^2 + y^2 + 4x + 6y 12 = 0$.

$$(4 + 4 + 4 + 3)$$

- 3. (a) If $\log 2 = 0.3010$ and $\log 3 = 0.4771$ what is $\log \left(\frac{16^2 5^2}{108^3} \right)$?
 - (b) In a mercantile firm, 4 posts fall vacant and 35 candidates apply for posts. In how many ways can a selection be made?
 - (i) If one person is always include
 - (ii) If one person is always excluded.
 - (c) Find the middle term in the expansion of $\left(\frac{4x}{5} \frac{5}{2x}\right)^8$.
 - (d) Find the co-ordinates of the point which divides externally the line joining (4, 7) and (1, -2) in the ratio 5: 2. (4 + 4 + 4 + 3)

UNIT-II

- 4. (a) If $\tan \theta = \frac{4}{5}$, find the value of $\frac{2\sin \theta + 3\cos \theta}{4\cos \theta + 3\sin \theta}$
 - (b) Evaluate $\lim_{x\to 0} \left(\frac{4x^2 + 5x^3 + 7x^2 + 6x}{5x^5 + 7x^2 + x} \right)$
 - (c) Prove that the function $x^2 + 4x 2$ is continuous at x = 1.
 - (d) Find the value of $\int_{2}^{4} (3x-2)^{2} dx$. (4 + 3 + 4 + 4)

- 5. (a) If $\cos \theta = \frac{24}{25}$ and θ is an acute angle find the values of other trigonometric functions.
 - (b) Evaluate $\lim_{x\to 2} \frac{x^2 x 2}{x^2 5x + 6}$
 - (c) Differentiate $\frac{3x^2 + 5x}{7x + 4}$ with respect to x.
 - (d) Prove that $4(\sin^4 30^0 + \cos^4 60^0) 3(\cos^2 45^0 \sin^2 90^0) 2 = 0$ (4 + 4 + 4 + 3)

UNIT-III

- 6. (a) If $X = \{1,2,3,4\}$ and $R = \{(1,1), (1,4), (4,1), (4,4), (2,2), (2,3), (3,2), (3,3)\}$, write the matrix of R and sketch its graph.
 - (b) $A = \{1,2,3,4\}$ $B = \{a,b,c\}$ $C = \{x,y\}$. Write $A \times B$, $A \times B \times C$, $B^2 \times A$, $C \times A$, $B \times C$
 - (c) If $R = \{<1,2><3,4><2,2>\}$ $S = \{<4,2><2,5><3,1><1,3>\}$ where R and S are relations, write $R \circ S$, $R \circ R$, $S \circ S$, $S \circ R$ and $R \circ (S \circ R)$ (5 + 5 + 5)
- 7. (a) $A = \{x/x \text{ is and integer and } 0 \le x \le 5\}, B = \{3,4,5,17\} \text{ and } C = \{1,2,3\}.$ Find,
 - (i) $A \cup B$
 - (ii) A∩B
 - (iii) A-B
 - (iv) A-C
 - (v) A∩C
 - (b) Given the relation matrices.

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad M_S = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Find $M_{R \circ S}$, $M_{\tilde{R}}$, M_S $M_{\overline{R} \circ S}$ and show that $M_{R \circ S} = M_{\tilde{S}} \circ M_{\tilde{R}}$

(c) Define Inverse of function. Show that the functions $f(x) = x^3$ and $g(x) = x^{\frac{1}{3}}$ for $X \in R$ are inverse of one another. (5 + 5 + 5)

Shri Oharmasthala Manimatheshwara College of Business Management Library

MANGALORE - 575 003