Reg. No.									
----------	--	--	--	--	--	--	--	--	--

BCACAC 108

Credit Based First Semester B.C.A. Degree Examination, Nov./Dec. 2018 COMPUTER ORGANIZATION (Common to All Batches)

Time: 3 Hours

Max. Marks: 80

Note: Answer **any ten** questions from Part – **A** and **any one full** question **each** Unit of Part – **B**.

PART - A

1. a) $(1110001101)_2 = ()_8$.

 $(2 \times 10 = 20)$

- b) Write 9's and 10's complement
 - i) (701189)₁₀
 - ii) (4706.15)₁₀.
- c) Write the Logic Symbol and truth table of XOR gate.
- d) Write the general structure of 2 and 3 variables K-Map.
- e) Prove that ABC + A'B + ABC' = B.
- f) Write the dual of the given expression F = (X + Y)(X + Y' + Z)
- g) Write the logical expression for 1 bit comparator.
- h) Write the truth table of Half Subtractor.
- Write the truth table of octal to binary encoder.
- j) Write the excitation tables of SR and T flip flop.
- (c+ck) Draw a block diagram of 4 bit Right Shift bit register using D flip-flop.
 - I) Define counter. How many flip-flops are required to design MOD-18 synchronous counter?

PART - B

Unit - I

- 2. a) Perform following Conversion:
 - i) $(351)_{8} = ()_{10}$
 - ii) $(785)_{10} = ()_{8}$
 - iii) $(BCA)_{16} = ()_{2}$
 - b) Perform the following subtraction using 9's and 10's complement:
 - i) $(216)_{10} (485)_{10}$
 - ii) $(1024)_{10} (925)_{10}$.
 - c) State the postulates of Boolean algebra.

(5+5+5)

- 3. a) Perform following Conversion:
 - i) $(ABCD.65)_{16} = ()_{2}$
 - ii) $(785)_{10} = ()_{8}$
 - iii) $(1101)_{2} = ()_{10}$
 - b) Perform the following subtraction using 1's and 2's complement.
 - i) (1101), (1000),
 - ii) (1011), (1100),
 - c) State and prove any five theorems of Boolean algebra.

Unit - II

- 4. a) Express the Boolean function F(A, B, C) = A' + BC as sum of minterm and product of maxterm.
 - b) Prove that NAND is universal gate.
 - c) Using K-Map simplify the following expression:

$$F(w, x, y, z) = \sum (1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15).$$
 (5+5+5)

5. a) Using K-Map simplify the following expression:

$$F(w, x, y, z) = \sum (0,1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14)$$

- b) Implement the Boolean function F(A, B, C, D) = AB + C'D' using only NOR gate.
- c) Express the Boolean function F(A, B, C) = (A' + B')(B + C) as sum of minterm (5+5+5)and product of maxterm.

Unit - III

- 6. a) Explain the working of Full Adder.
 - b) Explain the working of 3 to 8 line Decoder.
 - c) Design BCD to Excess -3 code converter.

(5+5+5)

- 7. a) Design 2 bit Magnitude Comparator.
 - b) Design and explain BCD Adders.
 - c) Explain the working of 2x4 De-Multiplexer.

(5+5+5)

Unit - IV

- 8. a) Explain the working of clocked JK flip-flop. Write the characteristics and logical expression.
 - b) Design 4 bit Binary ripple counter.
 - c) Design BCD synchronous counter using T flip-flop.

(5+5+5)

- 9. a) Explain state table, state diagram and state equation using example.
 - b) Explain the working of Bi-directional shift register.
 - c) Design a OCTAL Synchronous counter using JK flip-flop.

(5+5+5)